Classifier.py

from torch import nn from torch.nn import functional as F class Classifier(nn.Module): def __init__(self): super().__init__() self.fc1 = nn.Linear(784, 120) self.fc2 = nn.Linear(120, 120) self.fc3 = nn.Linear(120, 10) # self.fc4 = nn.Linear(64,10) # defining the 20% dropout self.dropout = nn.Dropout(0.2) def forward(self, x): x = x.view(x.shape[0], -1) x = self.dropout(F.relu(self.fc1(x))) x = self.dropout(F.relu(self.fc2(x))) # x = self.dropout(F.relu(self.fc3(x))) # not using dropout on output layer x = F.log_softmax(self.fc3(x), dim=1) return x
The Fashion MNIST Datasets contain a set of 28x28 grayscale images of clotes. Our goal is building a neural network using Pytorch and then training the network to predict clothes. 84% max. First python Without REFACTOR.

Be the first to comment

You can use [html][/html], [css][/css], [php][/php] and more to embed the code. Urls are automatically hyperlinked. Line breaks and paragraphs are automatically generated.